学工管理系统




import pandas as pd
from sklearn.model_selection import train_test_split
from sklearn.linear_model import LinearRegression
# 加载学生成绩数据
data = pd.read_csv('student_scores.csv')
# 数据预处理
X = data[['Hours_Studied', 'Previous_Scores']]
y = data['Final_Score']
# 划分训练集和测试集
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)
# 训练线性回归模型
model = LinearRegression()
model.fit(X_train, y_train)
# 预测测试集结果
predictions = model.predict(X_test)
print(predictions)
]]>
from sklearn.ensemble import IsolationForest
# 使用孤立森林进行异常检测
iso_forest = IsolationForest(contamination=0.05)
anomalies = iso_forest.fit_predict(X)
# 输出异常值索引
anomaly_indices = [i for i, val in enumerate(anomalies) if val == -1]
print("异常学生索引:", anomaly_indices)
]]>